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Abstract

The spectral turbulence transport model from part I of these two articles is compared with
experiments of the late stages of turbulent mixing due to Rayleigh±Taylor instability, when the
dynamics become approximately self-similar in response to a constant body force. We also examine the
spectral dynamics of the ¯ow immediately following a rapid transient in the body force. Generic forms
for anisotropic spectral structure are described and then used as a basis for deriving spectrally integrated
moment equations that can be more easily incorporated into computer codes for scienti®c and
engineering analyses. We describe comparisons with experiments of this spectral formulation and
indicate directions for re®nement, analogous to those that are required for constant density turbulence
transport. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The Rayleigh±Taylor instability occurs at the interface of two ¯uids of di�erent densities

con®gured such that the lighter ¯uid is accelerated into the heavier ¯uid by a pressure gradient,

i.e. whenever the pressure gradient opposes the density gradient (Hp�Hr<0). This instability

can occur, for example, in ICF targets during the laser implosion of a dense shell (pusher)

®lled with deuterium±tritium gas. The e�ects of this instability during the acceleration phase
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are of current interest to the ICF community (Takabe et al., 1985). For this study, we consider
the incompressible case of the Rayleigh±Taylor instability where a body force due to an
acceleration produces a pressure gradient across the ¯uid±¯uid interface such that the higher
pressure occurs in the lighter ¯uid. A quantitative overview of the Rayleigh±Taylor instability
which describes the phenomenology that occurs at an unstable interface is given by Sharp
(1984). The seminal work on this topic was that of Lord Rayleigh (1900), who was the ®rst to
investigate the equilibrium of a strati®ed inviscid ¯uid. Lamb (1931) discusses some problems
related to Rayleigh's paper. Taylor (1950) generalizes the linear analysis and took into account
inertial and body forces to include the e�ects of surface tension. Lewis (1950) experimentally
con®rms Taylor's ®ndings by accelerating an initially stably strati®ed ¯uid downward at a rate
50 times greater than the acceleration due to gravity. This study by Lewis showed that, for an
air±liquid interface, the linear analysis was correct for the initial stages of the instability. The
experiment also shed some light on the large amplitude evolution of the instability.

This instability has been investigated using in®nitesimal perturbations on the initial interface
(Rayleigh, 1900; Lamb, 1931; Taylor, 1950; Allred and Blount, 1953; Birkho�, 1954, 1956), as
well as ®nite amplitude initial perturbations (Birkho�, 1954, 1956; Emmons et al., 1960). The
investigations have been extended to include the e�ects of surface tension (Bellman and
Pennington, 1954), viscosity (Chandrasekhar, 1954; Hide, 1955), gradual density gradients
(LeLevier et al., 1955; Case, 1960), as well as di�usion (Du� et al., 1962). Mitchner and
Landsho� (1964) extended the above work to include the e�ects of compressibility. Richtmyer
(1960) and Meshkov (1969) have investigated the instability resulting from an impulsively
accelerated interface due to the passage of a shock. Richtmyer investigated the instability via
small amplitude theory for a shocked interface, and Meshkov performed the validating shock
tube instability experiments. Theoretical investigations of the late stage turbulent mixing of the
Richtmyer±Meshkov instability include the work of Andronov et al. (1976).

Experiments that have concentrated on the growth of a single wavelength perturbation due
to the Rayleigh±Taylor instability include the work of Emmons et al. (1960), Cole and Tankin
(1973), Rata®a (1973), and Popil and Curzon (1979). Rata®a (1973) experimentally
demonstrates the existence of Kelvin±Helmholtz roll-up structures on the sides of the
interpenetrating spikes of the heavier ¯uid.

The ®rst successful numerical calculations of the early stages of the Rayleigh±Taylor
instability were performed by Harlow and Welch (1965) using their Marker and Cell (MAC)
method for free surface calculations. Welch et al. (1966) describe a multi¯uid extension to the
MAC method which was later used by Daly (1967) to study the in¯uence of density variations
and viscosity on the rate of growth and shape of the Rayleigh±Taylor instability. Daly found
agreement with the predictions of Chandrasekhar (1954) for the growth rates in the linear
regime. Daly investigated the evolution of a single wavelength initial velocity disturbance for
various density ratios and established the now well-known behavior of a single wave at large
amplitudes. For small density di�erences, Daly demonstrated the manner in which the interface
rolls up into two counter-rotating vortices. For large density di�erences, the classical picture is
seen of the spikes of the heavier ¯uid penetrating the lighter, which in turn, bubbles up around
the interpenetrating spikes. Daly (1969) extends his work of 1967 to include the in¯uence of
surface tension on both the linear and the nonlinear phase of the instability.
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Youngs (1984) describes the ``basic picture of the mixing process'' due to the Rayleigh±
Taylor instability in which he identi®es three stages of evolution for the instability. The ®rst
stage that he identi®es corresponds to the appearance of the most unstable perturbation of
wavelength lm which grows exponentially. Stage two of the evolution commences when the
height of the perturbation is approximately half the value of the wavelength and is
characterized by a slowing of the growth rate of the perturbations that penetrates the denser
¯uid to a rate proportional to Zgl, where g is the imposed acceleration. Stage two is
characterized by the classical Rayleigh±Taylor picture of interpenetrating spikes and bubbles.
If the initial perturbations are small, then it is the nonlinear coupling between the small scale
structures that creates larger wavelengths. Experiments of Lewis (1950) and Emmons et al.
(1960) show that it is a competition between bubbles that leads to a bubble amalgamation
process where the larger bubbles crowd out the smaller ones. The velocity derived in the theory
by Davies and Taylor (1949), n=0.66ZgR, also shows that the bubbles of larger radius will
dominate the ¯ow. In this article, we refer to this process by which dominant wavelengths
increase in magnitude as ``bubble doubling''. These interactions facilitate the loss of detailed
memory of the initial conditions. Memory of the initial conditions is lost when the dominant
wavelengths of the perturbations are about 10 times larger than lm. This point marks the
beginning of the ®nal stage of evolution. The e�ects of viscosity diminish as the scale structures
continue to grow.
In the ®nal stage, the ¯ow is de®ned as completely turbulent, and it is this mixing zone

between the two ¯uids that is hereafter referred to as the turbulent mixing zone (TMZ). Since
memory of the initial conditions is lost at the beginning of this stage, the ¯ow is said to be self-
similar. Consequently, the only remaining identi®able length scale of the ¯ow is the quantity
gt 2, where g is acceleration and t is time. Thus, the width W, of the TMZ can only be
expressed as a product of this quantity and some function of the density, namely,

W � F
r1
r2

� �
gt2

Read and Youngs (1983) and Read (1984) use a rocket-rig apparatus at the United Kingdom
Atomic Weapons Research Establishment (AWRE) in Aldermaston to investigate the ®nal
stage behavior of the mixing induced by the Rayleigh±Taylor instability. Also, Kucherenko et
al. (1991) use a similar apparatus at the Soviet All-Union Research Institute of Technical
Physics, at Chelyabinsk-70.
Data from AWRE and Chelyabinsk-70 are used as a basis for comparison in this article.

These experiments and the numerical studies of Youngs (1984) con®rm that the instability
becomes self-similar during the last stage of growth.
By de®nition, the mixing width, W, of the TMZ is the algebraic sum of h1 and h2 such that,

W= h1+h2. By de®nition, h1 is the di�erence in height between the position of the original
perturbed interface and the position in the TMZ where the volume fraction of the heavy ¯uid
has decreased from 1.0 to something near 0.95, i.e. near the edge of the bubble envelope;
whereas h2 is de®ned as the height di�erence between the position of the original perturbed
interface and the position in the TMZ where the volume fraction of the light ¯uid has
decreased from 1.0 to something near 0.05 (Read and Youngs, 1983; Smeeton and Youngs,
1987; Youngs, 1992a). The exact volume fraction that is used to determine h1 and h2 di�ers
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among experimenters. Note that Kucherenko et al. (1991) use L21 to de®ne the British value of
h2 and L12 to de®ne the British value of h1, but for simplicity, the data of Kucherenko et al. is
expressed in terms of h1 and h2 within this report.
Both numerical simulations (Youngs, 1984, 1991) and experimental results (Read and

Youngs, 1983; Read, 1984; Smeeton and Youngs, 1987; Youngs, 1992a) indicate that the above
empirical expression for W is more applicable to the depth of penetration of the lighter ¯uid
(bubble envelope) into the heavier ¯uid, h1, than for the total width, W, of the TMZ. Read
and Youngs (1983) and Burrows et al. (1984) show that if the mixing between the two ¯uids
evolves from small random perturbations on the interface, the penetration of the mixing region
into the denser ¯uid, h1, is given by

h1 � a
r2 ÿ r1
r1 � r2

gt2

where the self-similarity coe�cient a is found to be insensitive to the density ratio and varied
little from a value of about 0.06 among di�erent experiments (Read and Youngs, 1983; Read,
1984; Andrews, 1992; Linden et al., 1992). One ®nal de®nition that is used throughout this
report is that of the variable X, the scaled acceleration used in the above experiments, which is
given by

X � r2 ÿ r1
r1 � r2

gt2

The best experimental estimates for a in a truly three-dimensional situation are approximately
0.07. Youngs (1992a) gives a range of values from 0.050 to 0.077 for a. Linden et al. (1992)
report a value of 0.070 for a when using a relatively large, three-dimensional tank. Andrews
and Spalding (1990) cite a value of 0.04 for a. Snider and Andrews (1994), who report values
of a=0.07020.011, explain that the container used to hold the mixing ¯uids of the
experiment of Andrews and Spalding (1990) was narrow (approximately ``two-dimensional''),
and that this could account for the smaller value of a. On average, the values of a are higher
for three-dimensional tests than those values of a found in ``two-dimensional'' tests. Youngs
con®rms this numerically; for two-dimensional numerical calculations, Youngs (1991, 1992a)
reports values of a between 0.04 and 0.05, while the early time values of a are reported as
higher for the three-dimensional case (Youngs, 1991). Others have numerically investigated the
evolution of the TMZ (Gardner et al., 1988; Tryggvason and Unverdi, 1990; Andrews, 1992;
Glimm et al., 1992; Li, 1993), and have all reported values of a close to the above values
reported by Youngs, i.e. 0.038R aR0.071.
It should be mentioned that, in the literature, Kucherenko et al. use a self-similarity variable,

S, de®ned as S= gt 2/2, but the data from Chelyabinsk-70 which we use in this article is for a
density ratio, n, of 3, and coincides with an Atwood number, (r2ÿr1)/(r1+r2), of 0.5. Thus,
the self-similarity variable X from AWE and the S from Chelyabinsk-70 are identical for the
results presented in this work.
Demixing has also been investigated (Smeeton and Youngs, 1987; Kucherenko et al., 1994).

Kucherenko et al., as well as Smeeton and Youngs, accomplish this by changing the
acceleration during the self-similar stage of growth of the TMZ. They observe a partial
contraction in the width of the TMZ and de®ne a constant to accompany this process which is

M.J. Steinkamp et al. / International Journal of Multiphase Flow 25 (1999) 639±682642



similar to the acceleration constant of a as described above. They cite values for this constant
on the order of 1/7 of the values of a. Other variants of the change in acceleration are reported
by Smeeton and Youngs (1987). Spalding (1985b) used a direct numerical simulation (DNS) to
study this de-mixing process. Andrews (1986), as suggested by Spalding (1985a), used a two-
¯uid model to predict both the Rayleigh±Taylor mixing and the late time de-mixing.
Andrews (1986) states that the use of a two-¯uid model is justi®ed because the TMZ is

comprised of fragments of di�erent density ¯uids. A body force induces di�erent accelerations
on each ¯uid fragment causing di�erent relative ¯uid velocities, and, hence, di�erent inter¯uid
drags. Andrews paraphrases Spalding (1985a) by referring to this phenomena as ``sifting'' and
suggests the use of a two-¯uid model to capture correctly the relative motion of the ¯uid
fragments. A two-¯uid model, as opposed to a turbulence model which uses di�usive-type
gradient approximations for closure of the triple correlation terms, is necessary to capture the
e�ects of a counter-gradient ¯ux. Youngs (1992b) also uses a two-¯uid model to investigate the
turbulent mixing of the late stages of the Rayleigh±Taylor instability. He ®nds good agreement
with his own experiments. For these same reasons, we also incorporate concepts pertaining to
inter¯uid drag from a two-¯uid model into our investigations as described in the ®rst of these
two articles, which will hereafter be referred to as Article I. For a comprehensive summary on
two-phase ¯ow modeling, the reader is referred to Drew (1983).
Many investigators have used single-point variable density turbulence transport models to

investigate the late stages of the Rayleigh±Taylor instability (Belenkii and Fradkin, 1965;
Anuchina et al., 1978; Neuvazhaev and Yakovlev, 1984; Andrews, 1986; Kucherenko and
Shibarshov, 1986; Anisimov and Polyonov, 1989; Neuvazhaev, 1989; Polyonov, 1989;
Nikiforov, 1991). Reasonable agreement with experiment is easily achievable with the
adjustment of parameters, but their results are not universal due to the implicit assumptions of
statistical equilibrium. Another problem with single-point models is the di�usive nature of the
closure assumptions. These di�usive closures do not allow for the proper representation of de-
mixing (Andrews, 1986) due to transients in the ¯ow. To address this problem, investigators
have tried to form hybrid models using both the single-point transport models combined with
the equations of two-¯uid models (Cran®ll, 1991; Youngs, 1989, 1992b).
An avenue that has proved useful in simulating the early stages of the Rayleigh±Taylor

instability is numerical simulation using front tracking (or interface tracking) methods
(Tryggvason, 1988; Li, 1993; Linden et al., 1994; Youngs, 1994). Also, the presence of widely
varying length scales makes high Reynolds number turbulence very expensive, if not
impossible, to simulate using DNS. The investigator must have a su�ciently resolved grid in
order to compute correctly the transfer of energy to the ®nest scales of the ¯ow. Due to the
complexity of the structures after the self-similar stage has been reached, these methods tend to
become very expensive numerically, and one ®nds motivation to approach the problem from a
statistical point of view.
To this date, however, only Besnard et al. (1995), Clark and Spitz (1995), and our work in

Article I represent the development of a statistical spectral model for variable density
turbulent mixing. Our spectral model is capable of describing a turbulent ¯ow that is far
from statistical equilibrium and allows for the examination of the statistical equilibrium, or
``self-similar'' phase of mixing. This capability goes beyond that which any single-point
model may claim.

M.J. Steinkamp et al. / International Journal of Multiphase Flow 25 (1999) 639±682 643



In this article, we present the numerical results of the spectral model equations from
Article I as applied to turbulent mixing due to the Rayleigh±Taylor instability. The purpose
of this article is to demonstrate the behavior of the spectral model equations, show
comparisons with experiments, and show the e�ect of some variations to the base case
calculation. For this demonstration, we will present numerical results of a base case for
mixing only, followed by examples to demonstrate the in¯uence that the various coe�cients
have on the calculations. We also show the spectral behavior for the net mass ¯ux velocity,
a, during the process of a rapid transient (an acceleration reversal is used for this
demonstration). The latter example demonstrates the spectral behavior for ¯ows that are no
longer in spectral equilibrium.
To study the properties of the spectral equations we have written a ®nite-di�erence code for

their numerical solution. The con®guration we have chosen for illustration (Rayleigh±Taylor
instability) is that of an initial interface between two inviscid, incompressible ¯uids of di�erent
densities. The ¯uid is subjected to a body force, rg, due to an acceleration directed in the
negative y direction. The pressure gradient arises by imposing a body force (acceleration) to
the ¯uids but holding the containing vessel at rest. An equivalent procedure, employed by the
experiments with which we compare, accelerates the vessel, with a pressure gradient arising in
order that the ¯uid is accelerated commensurate with the motion of the vessel. Below the
mixing layer is a ¯uid with density r1; above the layer is a di�erent ¯uid with density r2; for all
of our calculations r1<r2, such that when g<0 the con®guration is unstable and mixing
ensues. We also discuss the consequences of a reversal of the sign of g after the mixing layer
has become self-similar.
The numerical solution technique and its validation for the present purpose is described by

Steinkamp (1996). The computer code consists of a spectral part and a spectrally integrated
part. In the latter, with the containing vessel at rest, the pressure gradient is updated in such
a manner as to ensure vanishing ¯ux of ¯uid volume in all cells within the ¯ow. Thus the
transport equations for uÄ and the spectrally integrated transport equation for a are forced to
be equivalent, which determines the variations of pressure in response to the speci®ed body
force. Due to the chosen con®guration and imposed acceleration, the mean ¯ow variables
exhibit only y-dependence and the only nonzero components of the turbulence variables are
Rnn, Ryy, ay, and of course b, since it is a scalar measure of the degree of mixing within each
computational cell. Hereafter, we will use Rij, ay and b to indicate the spectral quantities and
we will explicitly show their respective arguments only for the case of representing their
single-point forms, i.e. when they are functions of the normal direction y and time only.
Whereas the density, r, velocity, u, pressure, p, turbulent length scale, S, and the turbulent
kinetic energy, K, will always be functions of the normal direction y and time only, the
acceleration, g, varies only with time for these discussions.
The principal data for comparison with calculations comes from extensive experimentation

at AWRE (Smeeton and Youngs, 1987) and Chelyabinsk-70 (Kucherenko et al., 1991). The
data are not as complete as we would like; we expect considerably more data from the
anticipated experiments of Remington and Dimonte at Lawrence Livermore National
Laboratory, LLNL (personal communication 1995). The results currently available are pro®les
of estimated mix fraction across the layer, the mix interpenetration rates into each ¯uid, and
some qualitative indications of dominant scale.
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2. Mixing due to an acceleration

Figures 1±12 give results from the base-case calculation. Dimensionality is denoted on each
graph using L for a length scale, M for mass, and T for time. In the following ®gures, the
spectral behaviors of the variables are plotted as functions of the nondimensional variable z,
where z=ln(k/k0). This logarithmic transformation is used to accentuate the regions of
physical signi®cance; that is to say, as the turbulence evolves, the turbulent length scales grow,
corresponding to a migration of the turbulence spectra toward k=0. Thus the transformation
allows the details of the spectrum near k=0 to be spread over the corresponding in®nite
interval in nondimensional z-space. The constant k0 serves to nondimensionalize the
transformed spectral equations and to provide a reference wave number for specifying initial
conditions. The initial con®guration consists of a heavy ¯uid (r2=2.0) sitting over a lighter
¯uid (r1=1.0). At time t=0, acceleration ( g=ÿ1.0) is turned on, and the mixing of the two
¯uids commences. The nonlocal version of the source term is used in the Reynolds-stress
equations (see Article I). At t=0, the values of Rnn, Ryy and ay are zero in every
computational cell. The value of b likewise vanishes in every cell except the one containing the
two-¯uid interface, where

Fig. 1. Spectra at times, t=10 (solid line, no symbols), 20 (dotted line, no symbols), 30 (circles), 40 (squares), 50
(triangles) and 60 (diamonds), at the position of the initial ¯uid interface for: (a) the net mass-¯ux velocity, ay; (b)
the speci®c volume±density correlation, b; (c) the contraction of the Reynolds stress tensor, Rnn and (d) the Ryy

component of the Reynolds stress tensor.
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b � g1 k
m

1� g2 km�5=3 �1�

The two coe�cients, g1 and g2, have been chosen to ensure that the maximum of b occurs at
k= k0 and the spectral integral of b, namely b( y), has the maximum con®gurational value
corresponding to equal volume fractions of the two ¯uids in that cell, i.e. y1=y2=0.5,

b�y; t� � r2 ÿ r1
ÿ �2
4r1r2

�2�

For a discussion on the con®gurational value of b( y,t), see Besnard et al. (1992). For the base
case, m=4.0, k0=1.0, and

g1 �
r1 ÿ r2
ÿ �2
4r1r2 f�m�

g2 �
3m

5

� �
kÿ�m�5=3�0 �3�

Fig. 2. Normalized spectra for t=30, 35, 40, 45, 50, 55, 60 and 65, at the position of the initial ¯uid interface: (a)
the net mass-¯ux velocity, ay; (b) the speci®c volume±density correlation, b; (c) the contraction of the Reynolds
stress tensor, Rnn and (d) the Ryy component of the Reynolds stress tensor.

M.J. Steinkamp et al. / International Journal of Multiphase Flow 25 (1999) 639±682646



where

f�m� �
��1
ÿ1

km 1� 3m

5

� �
k

k0

� �m�5=3 !ÿ1
dk �4�

Fig. 3. Pro®les of the power law exponent across the TMZ at t=65 for (a) the low wave numbers; and (b) the high

wave numbers.

Fig. 4. Normalized spectra for t=30, 35, 40, 45, 50, 55, 60 and 65, a distance of 50 units of length below the
centerline of the TMZ: (a) the net mass-¯ux velocity, ay; (b) the speci®c volume±density correlation, b; (c) the

contraction of the Reynolds stress tensor, Rnn and (d) the Ryy component of the Reynolds stress tensor.
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Boundary conditions must be considered whenever a calculation is performed. In the y

direction the domain simply extends well into the pure material on either side of the TMZ,

where everything is assumed to be at rest. In k-space we assume that the resolved part of the

calculation is bounded by exponential behaviors for both the large and small wave numbers

beyond the resolved region. This prescription allows the variable to ¯ux through the k-space

boundaries. We also experiment with an exception to this procedure, in which the ¯ux of b at

large wave numbers was set equal to zero, corresponding to (presumably) immiscible ¯uids

with surface tension e�ects. As illustrated and discussed below, the e�ect on b is large; but the

di�erence is almost entirely due to the retention or discarding of the high wave number,

essentially passive parts of the b spectrum; and the e�ects on all the other quantities are

negligible.

Values for the C coe�cients in the transport equations of Article I have been chosen to be

the same as those used by previous investigators for constant-density or single-point studies.

For the drag coe�cients in the ay-equation, we use values that are greatly enhanced (Youngs,

1992b) over those for isolated spheres, as discussed in Article I. Hence, the values we use for

the two drag coe�cients are Crp1=5.0 and Crp2=6.0. For the local cascade coe�cients, we

use the values discussed by Clark and Zemach (1995): C1=0.1212 and C2=0.0606. Spatial

di�usion and molecular di�usion are modulated by the coe�cients, Cd=0.03 and Cdb=0.0,

Fig. 5. Comparison of normalized spectra at y=0 and y=ÿ50 at t=65 for: (a) the net mass-¯ux velocity, ay; (b)
the speci®c volume±density correlation, b; (c) the contraction of the Reynolds stress tensor, Rnn and (d) the Ryy

component of the Reynolds stress tensor.
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respectively. To match experiment, we found Cfb=0.5 to give decent agreement. Because Cfb

is the one coe�cient that is not ascertained in terms of previous investigations, we varied its

value to determine the e�ect and observed that it is noticeable but not profound, as described

below. Clark and Zemach (1995) discuss a value of Cm for constant density turbulence that is

smaller than the value used here. We have tested the model for values of Cm between that

suggested by Clark and Zemach (1995), Cm=0.17, and the value we use here, Cm=1.0, and

found negligible di�erences in the results. We suspect that this is caused by the fact that our

inhomogeneous ¯ow is strongly dominated by the sources due to mixing that renders the

return to isotropy a second-order e�ect.

Fig. 1 illustrates the time evolution of the spectral behavior for the variables as functions of

the logarithm of (k/k0). In all four plots the spectra are migrating to the left (toward lower k

values) as time progresses. We identify length scales as the reciprocal of the wave number at

which the spectrum has its extremum. The leftward migration is thus consistent with an

increasing length scale for each variable. The spectra are given for equal time increments,

Dt=10, so as to demonstrate the linearly increasing growth rate of the peaks of the spectra.

This variation is consistent with quadratic growth in time of the TMZ width, in agreement

with expected self-similar behavior as described in the Appendices.

Fig. 6. Comparison of normalized spectra at y=0 and y=50 at t=65 for: (a) the net mass-¯ux velocity, ay; (b)
the speci®c volume±density correlation, b; (c) the contraction of the Reynolds stress tensor, Rnn and (d) the Ryy

component of the Reynolds stress tensor.
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One characteristic that demonstrates the intervariable relationships that exist within the
equations is the di�ering behavior of the spectral structures at the higher wave numbers. The
right sides of the spectra for ay and b migrate rapidly toward smaller values of k causing an
overlapping appearance for a sequence of plots, while the right sides of the spectra for Rnn

and Ryy coincide for that same sequence of times. The strong migration to the left seen in
the b spectrum is due to the relatively large value chosen for Cfb, the one ``free'' parameter
in our equations. The value of Cfb signi®cantly in¯uences the leftward migration of the
spectrum of b. This e�ect in¯uences the b spectrum the most. Because b is a principal source
to ay, the e�ect is also seen in the spectrum of ay but to a relatively lesser degree. The
Reynolds-stress spectra are, in turn, also moved to lower wave numbers. This leftward
migration of these spectra is associated with the nonlinear ``bubble-doubling'' in the mixing
layer, as observed in numerous experiments and DNS calculations, and is important for the
agreement with experiments described below. These overall spectral forms result from a
complicated interplay among physical processes represented by the terms in the equations. In
Article I we show in much more detail the origins for the behaviors described in this base-
case calculation and its variants.

Fig. 7. Pro®les of the length scales across the TMZ at t=5 (solid line, no symbols), 15 (dotted line, no symbols), 25

(circles), 35 (squares), 45 (triangles), 55 (diamonds) and 65 (upside-down triangles) for: (a) the net mass-¯ux
velocity, ay; (b) the speci®c volume±density correlation, b; (c) the contraction of the Reynolds stress tensor, Rnn and
(d) the Ryy component of the Reynolds stress tensor.
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The self-similar nature of the spectral evolution of Fig. 1 can be demonstrated by rescaling
the results as shown in Fig. 2. The results in Fig. 2 are normalized to enable us to compare the
shapes of these plots at successive times. The resulting normalized plots are called ``shape
plots''. To achieve this normalization, two steps are taken. First, a spectrum is divided by its
extremum, resulting in all of the spectral maxima coinciding with 1.0 and values of the entire
spectrum falling between 0 and 1. Next, the spectra are all shifted so that the maximum of the
spectra coincide with k= k0. A sequence of times of these resulting shape plots is given on the
same graph so as to identify any di�erences in their structures. The coincidence of all plots
indicates a self-similar evolution of the mixing layer. The plots of Fig. 2 are taken from the cell
where the initial ¯uid interface existed. The mixing evolution becomes self-similar near t=30,
as demonstrated by the overlapping plots of this ®gure.
As the spectral peak migrates to the left, less and less of the spectrum lies to the left of that

peak and more of the resolved spectrum lies to the right. When the spectra are then shifted in
the normalizing process, the appearance of a diminishing tail on the left side and an increasing
tail on the right side is observed. Thus the plot with the longest tail on the left side represents
the earliest time of the sequence and the plot with the longest tail on the right side represents

Fig. 8. Pro®les of spectrally integrated variables across the TMZ at t=5 (solid line, no symbols), 15 (dotted line, no

symbols), 25 (circles), 35 (squares), 45 (triangles), 55 (diamonds) and 65 (upside-down triangles) for: (a) the net
mass-¯ux velocity, ay; (b) the speci®c volume±density correlation, b; (c) the contraction of the Reynolds stress
tensor, Rnn and (d) the Ryy component of the Reynolds stress tensor. The values for t=65 are designated by the
dotted line.
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the latest time in the sequence. The slopes at low and high wave numbers are given to

demonstrate the behaviors of the spectral variables. It is especially noteworthy to observe here

the very close achievement of self-similarity.

The slopes in Fig. 2 represent the power law behavior of the spectra at only the initial

position of the ¯uid interface, y=0. Since these plots are functions of the logarithm of (k/k0),

the slope of the line corresponds to the power, m, of the wave number, k. (These are slopes

near k=0 and represent modifying tendencies for low wave numbers near k=0, but not at

precisely k=0, where the initial value of m is preserved). The spatial variation of the value of

m across the TMZ for both the low and high wave numbers is shown in Fig. 3. This plot is

given for t=65 well after the establishment of self-similarity. In e�ect, the spatial variations

shown in Fig. 3 indicate the temporal evolution of the power laws for any one ®xed position.

The center of the plot ( y=0) has been developing the longest, and the edges of the TMZ are,

relatively speaking, the newest parts.

For the low wave numbers, the b spectrum has a smaller value of m near y=0 than

occurs for the other spectra. The explanation lies in the e�ects of the Cfb term, which gives

to b the leading role in describing the nonlinear ``bubble-double'' process. Initialized with k 4

Fig. 9. (a) Pro®les of density across the TMZ for t=0 (solid line, no symbols), 5 (solid line, no symbols), 15 (dotted
line, no symbols), 25 (circles), 35 (squares), 45 (triangles), 55 (diamonds) and 65 (upside-down triangles). (b) Mass
and volume fractions of the heavy ¯uid across the TMZ at t=65. (c) Comparison of numerical results with AWE

experimental data (Smeeton and Youngs, 1987 (Fig. 24 and 25)). (d) Comparison of numerical results with
Chelyabinsk-70 experimental data (Kucherenko et al., 1991 (Fig. 11)).
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variation near k=0, the b spectrum feels most strongly the modifying e�ects of leftward (in
k-space) propagation of a concave-downwards structure that decreases the exponent. With b
as a source to ay, and ay as a source to Rij, the decrement in exponent is successively less in
these latter two functions. This behavior and the behaviors of both the ay and the Rij spectra
are consistent with the overlapping seen in Fig. 1. The high wave number, power-law

behavior of the four variables coincides at the edges of the TMZ and then separates as time
evolves. The values of m for the high wave numbers of Fig. 3(b) at y=0 are equal to the
slopes of the plots in Fig. 2. Only near y=0 does one observe the classical values of
m=ÿ5/3 (for b and Rij) and m=ÿ7/3 for ay, which result from the constancy of cascade
¯ux for b, Rnn and Ryy and the balance of drag with production for ay, as discussed in more

detail in Article I.

Fig. 4 shows the evolving spectral forms at a distance of 50 units of length below the initial
interface, showing the manner of arrival of the spectrum at each station as the TMZ widens.
The spectrum of ay arrives at nearly its self-similar form for all wave numbers, whereas the
spectra for the other quantities arrive in self-similar forms only for the lower wave numbers; at

Fig. 10. Spikes, h2, and the bubbles, h1, (a) as functions of time, and (b) as functions of the similarity variable, X.

Fig. 11. Comparison of the trace of the Reynolds stress tensor, Rnn, with Ryy for: (a) the centerline, y=0, at t=65,
and (b) the spectrally integrated form across the TMZ.
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the higher wave numbers there is signi®cant lag in the establishment of spectral self-similarity.
There are two reasons for this behavior. One of these is the e�ect of nonlocal source for Rnn

and Ryy, which projects the low wave number e�ects into lateral regions well ahead of the
e�ects at high wave numbers.
The second reason is that the growth of spectral forms for b, Rnn and Ryy is at ®rst

dominated by the e�ects of sources which at any station tend initially to impart a k ÿ7/3 form
at high wave numbers, being thereafter altered to k ÿ5/3 as the e�ects of constant cascade ¯ux
begin to dominate.
Fig. 5 shows a comparison at t=65 of the spectral form functions at y=0 and y=ÿ50. By

this time the self-similar form has been completely reached at y=0 and nearly reached at 50
units of length below y=0. Their nearly identical forms serve as a conformation of the self-
similar hypothesis discussed in Appendix A. Fig. 6 illustrates a similar comparison at y=50
units above the initial interface, again con®rming the remarkable observation of the form-
function decomposition hypothesis described in Appendix A.
This decomposition is possible because of neglect of molecular e�ects and surface tension. It

should be emphasized that the spectral normalizations to unit magnitude and shift to k= k0
have occurred over very large and di�erent ranges in these ®gures, so that their coincidence
seems all the more remarkable. We believe that there is a powerful underlying scaling principle
that can be exploited in the systematic analysis of certain turbulence circumstances that are
inhomogeneous, anisotropic, and even have large variations in ¯uid density.
Fig. 7 illustrates the nature of k shift that has been employed in getting the preceding plots

of spectral form functions. In this ®gure we show the reciprocal of the wave number at which
each spectrum has a maximum as a function of position across the TMZ. The ordinate is thus
a length scale, which relates the length scale proportional to K

����
K
p

=e that occurs in single-point
K±e turbulence transport models. Structural details in these length-scale pro®les have their
origin in the initialization for calculations where we only initialize the one cell containing the
original ¯uid±¯uid interface, which is far from self-similar. These minor details, once
established during the early-time adjustments to self-similarity, are captured and maintained by
the achievement of that self-similarity, indeed con®rming the attainment of that state. Of more
substance, however, are the overall forms of these plots. The length scales for ay and b more-

Fig. 12. Pro®le of b across the TMZ for the case of a spectrally unblocked calculation and a spectrally blocked

calculation compared with the con®gurational calculation of b, at t=65.
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or-less decrease towards the edges of the mixing layer, whereas the length scales for Rnn and
Ryy increase.
The basic reason for the laterally increasing length scales for Reynolds stress can be traced

to the nonlocal source. This identi®cation is con®rmed by contrasting with the results for a
local source term; see Section 4, which contains ®gures that show a lateral decrease in scale for
Rnn and Ryy. The signi®cance of this e�ect for single-transport modeling is the lack of
proportionality among length scales, for which we obtain remediation by allowing for more
than one scale to arise in the moment derivations. (This generalization becomes even more
signi®cant in the non-self-similar response to rapid transients of drive.)
Self-similarity also occurs in physical space, as shown in Fig. 8, again con®rming the

hypothesis stated in Appendix A. The initialization of b at y=0 is seen as the spike at t=0.
Lateral ``wings'' on the Reynolds-stress pro®les arise as a consequence of the nonlocality of the
creation term.
Fig. 9 describes the numerical results in terms of observables that can be compared with

experimental data. The principal data are the depth of penetration of heavy ¯uid into light, h2,
of light ¯uid into heavy, h1, and the variations of relative concentration between these edges of
the TMZ. In this ®gure we describe the concentration pro®les in terms of mean density, r,
together with the mass fraction and volume fraction of the heavier material. As pointed out by
a Russian experimental group (Kucherenko et al., 1991), the most convenient way to illustrate
the pro®le shape is to plot volume fraction as a function of the reduced variable

X � yÿ y0:1
y0:9 ÿ y0:1

�5�

where y0.1 and y0.9 are the positions at which the volume fraction is 0.1 and 0.9, respectively.
The excellence of agreement with both the British and Russian experimental data is not as
trivial as the simple structure of the pro®les would suggest. Two-®eld transport theory also
achieves this degree of agreement (Steinkamp, 1996), but the single-point turbulence transport
calculations using the model of Besnard et al. (1987) have great di�culty in matching this
simple pro®le of volume fraction across the TMZ without resorting to an ad hoc modi®cation
of the transport equation for the mass ¯ux.
The plots as functions of X in Fig. 9 exhibit the structure but preclude the observation of

behavior for h1(t) and h2(t). These quantities are shown in Fig. 10 as functions of time and of
the similarity variable,

X � r2 ÿ r1
ÿ �

gt2

r1 � r2
ÿ � �6�

From an experimental viewpoint, the evolution of h1 and h2 depends on how the edges of the
TMZ are located. The same comment applies to the calculation results. As shown by the
Russian experimentalists (see Section 4), edge criteria at volume fractions of 0.01 and 0.99
(®ne-edge criteria) result in much larger values of h1 and h2 (and of h2/h1) than criteria at
volume fractions of 0.1 and 0.9 (coarse-edge criteria). They also show, and we con®rm, that the
ratio h2/h1 converges very slowly to asymptotic value, being highly dependent on the early-time
rate of approach to self-similarity. They mitigate this di�culty by giving instead data for
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dh2
dt

dh1
dt

� �ÿ1
�7�

which is calculated as the ratio of slopes in Fig. 10(b) and equals h2/h1 at late stages in the self-
similarity. In Section 4 the calculated results are shown to lie a bit low for a nonlocal source
and a bit high for a local source when compared with the data.
Self-similarity in our case means that the spreading of the TMZ can be characterized by

h1 �
a r2 ÿ r1
ÿ �

gt2

r1 � r2
ÿ � � aX �8�

This expression for the height of the bubble envelope was empirically formulated from
experiments by Read (1984) and Youngs (1989). There is experimental uncertainty to the value
of the coe�cient, a, with quoted values anywhere from 0.02 to 0.3 and greater. Nikiforov
(personal communication, 1994) speculates that the large range re¯ects the e�ects of miscibility
of the ¯uids. For immiscible ¯uids there seems to be a fairly broad consensus that
a=0.06520.01. Our calculated value, a=0.079, is slightly higher than the currently accepted
range.
An issue of some interest for our spectral equations is the rate of return to isotropy. Because

the process is nonlocal in wave-number space and a thorough investigation is beyond the scope
of this study, we have not examined the process in detail. One point that can be mentioned is
illustrated in Fig. 11, which shows the degree of anisotropy in the base-case calculation. As
plotted versus wave number, Rnn and Ryy look nearly the same, whereas the spectrally
integrated quantities plotted as a function of y demonstrate that there is a signi®cant di�erence
between the two quantities. Note that if Ryy=Rnn, then Rxx=Rzz=0, and the behavior is
completely anisotropic; the interpenetration is entirely ``ordered''. If Ryy=Rnn/3, then the three
diagonal components of the Reynolds stress are equal, and the con®guration is completely
isotropic (``disordered''). At low wave numbers the former condition prevails; at high wave
numbers the complete isotropy is approached. Thus the turbulence is created at low wave
numbers in primarily anisotropic (ordered) forms and becomes progressively more disordered
at any ®xed wave number as the TMZ grows and the spectrum shifts to the left.
Interpenetration at the large scales (low wave numbers) is thus predominantly wave-like
(hyperbolic, as in multi®eld ¯ow), whereas at the ®ner scales (high wave numbers) the
interpenetration becomes predominantly di�usive (parabolic, as in the more classical
circumstances of ``turbulence'').
We now describe some calculations that depart in one or another respect from the base case.

In the ®rst of these variants, we investigated the consequences of blocking the cascade ¯ux of b
at a high wave number. Spectral integrals of b are shown in Fig. 12. With zero spectral ¯ux,
the cascade ¯ux is conservative, and the integral now includes the passive parts of the spectrum
that pile up at large wave numbers. The representation is a crude approximation of the
behavior that would be expected from the presence of a smallest attainable scale,
corresponding to a particle size that is not further subdividable. Whereas the Cfb term
describes an inverse transfer to progressively larger scales, the cascade to small scales shows
turbulence e�ects in tearing down the clumps. With a large Schmidt number, the latter process
would be expected to lead to the k ÿ1 spectral behavior of a passive scalar for those clump
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scales whose wave numbers exceed the viscous cuto�. We have not investigated such
circumstances. All of these considerations require an extensive program of investigation that
lies far beyond the scope of this article. Fig. 12 shows that the added contribution to the
spectral integral is noticeable, especially for the spatial positions (near the original interface)
for which direct cascade has been proceeding long enough for a high wave-number buildup.
The most signi®cant feature of this calculation is the negligible e�ect of blockage on the rest of
the variables, not shown here because the di�erences are simply not visible on the plots. Thus
the concept of a passive part for the b spectrum is embodied; in that range of wave numbers
the creation of ay is essentially balanced by the large drag of the small-scale clumps, in a range
of ay that is in any case so small (from k ÿ7/3 scaling) that its e�ect is negligible. The
con®gurational value of b in Fig. 12 is given by Besnard et al. (1992) as

a1a2 r1 ÿ r2
ÿ �2
r1r2

The transported values of b follow the con®gurational form rather closely, being less near the
center and somewhat higher in the lateral regions of the TMZ, principally as a result of
di�usion in the transport equation, which is conservative in physical space. Some
implementations of single-point turbulence transport equations (e.g. the model of Besnard et
al., 1992) into computer codes use a purely con®gurational form for b( y,t), and our results are
consistent with that procedure. Having demonstrated the close relationship between
transported b( y,t) and con®gurational b( y,t), we wonder why not use purely the
con®gurational form. The answer is in two parts. First, there is no con®gurational form for
spectral b, for which the distribution across wave-number space is needed for the spectral
analysis, and second, in the presence of phase transitions or molecular di�usion between the
two ¯uids, the transport equation can be directly modi®ed to include these e�ects, together
with the resulting decay of spectral b ultimately to zero. In the examples described here,
however, we have assumed that the rate of these extra processes is zero, so that Cdb=0.
With a sudden complete reversal of the body-force acceleration (e.g. from g=ÿ1 to

g=+1), the zone is expected to de-mix back to its original state with a sharp interface. As
pointed out by Nikiforov (personal communication, 1994), single-point transport equations in
a ®nite di�erence implementation have di�culty in calculating this process. We con®rm that
di�culty and have identi®ed one aspect of the problem. De-mixing is highly dissipative of
energy. In contrast to mixing, in which clumps of a material do not collide with others of the
same material, de-mixing is highly collisional within the ®eld of each material. The inelastic
collisions involve more detailed microphysics than our current model contains, in particular
splash with possible entrainment of the other material. Two-®eld models calculate de-mixing
with deceptive ease in the circumstance of no splash (the ``splat-and-stick'' limit). When y1 or
y2 has increased back to 1.0, the calculation holds the volume fraction constant thereafter, the
incompressibility condition for that ®eld ensures that the velocity comes at once to rest,
thereby accomplishing a continuous dissipation of collisional energy as each ¯uid returns to its
pure state. This matter is discussed more extensively by Steinkamp (1996) for the two-®eld
calculations in this limiting mode of de-mix representation.
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3. Numerical results for a rapid transient

We have not yet investigated the possible inelastic collisional interactions within a ¯uid
and their appropriate dissipative representation. The issue of particular concern to our
developments is the question of self-similarity during the rapid-transient phase of turnaround
induced by acceleration reversal. The principle issue concerns the variations of ay. The other
variables, b, Rnn and Ryy have much smaller transient response. With the reversal of
acceleration, there is likewise an instantaneous reversal of Hp. The di�erential acceleration
driver to ay thus reverses; for a brief period of adjustment that term works in concert with
the drag terms towards reversal of the sign of ay; in this regard the entire spectrum of b
becomes active. For the acceleration stage, the pressure and density gradient terms in
Fig. 13(a) balance the drag terms at high wave numbers, resulting in negligible changes in ay,
vanishingly small @ay/@t. Immediately after the acceleration reversal at t=65, the pressure
gradient term changes sign, resulting in a relatively larger change of ay for the high wave
numbers. In this respect we say that the high wave number portion of the b spectrum has
changed from passive to active.
When ay reverses sign, the mass ¯ux becomes counter-gradient to the density variation; the

two driver terms in the evolution equation for ay now work in opposition to one other. To
further illustrate this point, we see that the pressure gradient term and the density gradient
term both counter the drag terms in Fig. 13(a), whereas in Fig. 13(b), immediately following
the acceleration reversal, the density gradient term counters not only the two drag terms, but
also the pressure term. (As pointed out by Youngs (personal communication, 1993), this
opposition is necessary for describing his de-mixing experiments: di�erential acceleration
works to compact the zone whereas density-gradient turbulence ¯ux tends to preserve its
dispersal.)
Although the brief opposition of ay and Hp during the slowdown parts of turnaround give a

negative source to the components of Rij, the net e�ect is small. For the calculation of
turnaround results, we used the spectrally blocked version of the base-case conditions described
for Fig. 12, allowed the attainment of self-similar mixing, reversed g (from ÿ1 to +1) at
t=65, and recorded the turnaround until its more-or-less completion at t=80. The transient

Fig. 13. Spectral contributions of the dominant sources and sinks to the ay equation for: (a) mixing (g=ÿ1), and
(b) demixing, immediately after acceleration reversal (g=1).
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phases of structure for ay are shown in Fig. 14(a). There is a clear departure from the self-
similarity during the process. The large scales (small wave numbers) exhibit a more immediate
response than the small scales (at large wave numbers). A simple amplitude-modulated
function with slowly shifting position in k-space for its maximum is not strictly what occurs;
although, in e�ect, single-point model equations assume this.
Fig. 15 shows that, although the de-mixing process that follows ¯ow reversal cannot be self-

similar, the spectral forms as shown in Fig. 15 return to almost precisely those that were
present before the acceleration reversal. The implications are important for moment-integral
derivations of single-point transport equations: almost-universal forms occur in much wider
circumstances than just those that are self-similar.
Variations of spectrally integrated quantities across the TMZ are illustrated in Fig. 16.

Fig. 16(a) shows that the heavier clumps of ¯uid respond more quickly to gravity reversal than
the light clumps. The most startling observation is in Fig. 16(b), which shows negative values
of b where the heavier ¯uid is falling back into itself.
The anomaly is also seen in Fig. 17, in which the average density exceeds 2.0 at this fall-back

locality. In the two-®eld calculations of Steinkamp (1996), this impossibility is avoided by the
dissipative technique described above for one possible type of mixing. The same ``stick-and-splat''

Fig. 14. Spectra at times t=65 (dotted line) and t=80 (upside-down triangles), at the position of the initial ¯uid

interface, for: (a) the net mass-¯ux velocity, ay (also including plots for t=66.5, 68.0 (circles), 69.5, 71.0 (squares),
72.5, 74.0 (triangles), 75.5, 77.0 (diamonds), and 78.5); (b) the speci®c volume±density correlation, b; (c) the
contraction of the Reynolds stress tensor, Rnn and (d) the Ryy component of the Reynolds stress tensor.
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®x technique could also be employed here, but the topic requires extensive consideration and
discussion for more general de-mixing circumstances, which is beyond the scope of this article.
The base case calculation without spectral blockage was also performed for the mixing of

two ¯uids with a larger density ratio, r2/r1=5.0. The results exhibit essentially the same
attainment of self-similarity, with spectral exponents corresponding to those in Fig. 2.
For the case with a density ratio of 5.0, as in Fig. 3, the ordering of exponent values in

Table 1 for low wave numbers is the same and for the same reasons having to do with the
e�ects of Cfb. For high wave numbers we see again the large contrast between the cascade-
dominated behavior of Rij and b, for which m1ÿ5/3 and the drag-dominated behavior of ay,

Fig. 15. Normalized spectra for t=65 (dotted line) and t=80 (solid line), at the position of the initial ¯uid

interface, for: (a) the net mass-¯ux velocity, ay; (b) the speci®c volume±density correlation, b; (c) the contraction of
the Reynolds stress tensor, Rnn and (d) the Ryy component of the Reynolds stress tensor.

Table 1
Power law behavior for both the low and high wave numbers for the transported
spectral variables

Quantity Low-k exponent High-k exponent

Rij(k) 3.99 ÿ1.74
b(k) 3.87 ÿ1.71
ay(k) 3.92 ÿ2.37
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for which m1ÿ7/3. The value of a, the self-similar growth coe�cient for h1, is 0.11, which is
appreciably larger than either the base-case result or the experimentally observed result. In
addition, h2/h1 approaches the magnitude 1.08, which is low.

4. Local versus nonlocal source term

Two intriguing disagreements with experiments are especially noticeable in the results
discussed so far (see Table 2). One is the coe�cient for self-similar growth of h1, which is

Fig. 16. Pro®les of spectrally integrated variables across the TMZ for t=65 (dotted line) and t=80 (upside-down
triangles) of (a) the net mass-¯ux velocity, ay (including plots for t=66.5, 68.0 (circles), 69.5, 71.0 (squares), 72.5,
74.0 (triangles), 75.5, 77.0 (diamonds) and 78.5); (b) the speci®c volume±density correlation, b; (c) the contraction of

the Reynolds stress tensor, Rnn and (d) the Ryy component of the Reynolds stress tensor.

Table 2
Self-similar coe�cient, a, and the asymmetry of the TMZ for the two numerical runs
and experiments

Source to Rij a h2/h1

Local 0.042 1.79
Nonlocal 0.079 1.05
Experiments 00.065 01.30
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somewhat too large, and the other is the asymptotic ratio of h2/h1, which is too small. An
intriguing clue to remediation of both discrepancies lies in the results described by Figs. 18±22.
In those ®gures we compare the base case with local and nonlocal source terms for Rnn and
Ryy. Fig. 18 shows the large contrast in results. With the local source, density exhibits sharp
variations on each side of the TMZ; these are more spread out with the nonlocal source.
The coe�cient, a, is sharply reduced to the value a=0.042, whereas the ratio of penetration

depths, h2/h1, approaches the much larger value of 1.79. In both respects the experimental
values lie between the extremes.
It thus appears that a more restrictive nonlocal formulation for Q( y 0,y) could produce closer

agreement with experiments in both respects. The task of deriving such a formulation remains
a challenge yet to be addressed.
The spectral behaviors are compared at low and high wave numbers in Figs. 19 and 20. At

the low wave numbers, there is a signi®cant e�ect, which is discussed in Appendix C of Article
I. At the high wave numbers there is very little di�erence between the local and nonlocal
formulations. Here we merely observe that the spectrally preserving local source is structurally
dominated by the Cfb e�ects, so that the exponent is lower than with the nonlocal source,
which is not spectrally preserving and indeed tends to increase the exponent at low wave
numbers. This complicated set of interactions is discussed in more detail in Article I.

Fig. 17. Pro®les of density across the TMZ for t=65 (dotted line) and t=80 (solid line).

Fig. 18. Comparison of the density across the TMZ for a local source to Rij and a nonlocal source to Rij.
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Fig. 21 is comparable to Fig. 4, with both showing the evolution towards self-similarity at a
distance of 50 units below the original interface. The results are quite similar; in both cases the
®rst in¯uence to arrive is that of ay, which tends to impart k ÿ7/3 behavior at the high wave
numbers, soon to be dominated, however, by the e�ects of cascade that convert the spectrum
to k ÿ5/3. At the lower wave numbers the spectrum arrives in completely self-similar form.
The contrast between local and nonlocal lateral propagation is manifested in slightly less

departure from self-similarity at high wave numbers in the local case, especially in the spectra
of Rnn and Ryy. The reason is that nonlocal propagation favors more rapid lateral distribution
of the larger scales, with corresponding slower lateral distribution of the smaller scales.
This di�erence in lateral propagation is especially apparent in Fig. 22, which shows the

spatial distributions of scale lengths (reciprocals of wave numbers for the spectral extremum) at
a late time in self-similar TMZ growth. Disregarding structural details in the pro®les, we notice
a signi®cant di�erence between the local and nonlocal results. For the local source term, the
length scales all tend to decrease towards the edges of the TMZ. With a nonlocal source term,
the pro®les for ay and b are essentially the same, whereas for Rnn and Ryy the scales increase
signi®cantly towards the edges. It is this feature that especially demonstrates the desired
consistency with Rayleigh±Taylor theory, as discussed in Appendix A of Article I.

Fig. 19. Comparison of the low wave number, power-law behavior of k at t=65 for a local and nonlocal source

term: (a) the net mass-¯ux velocity, ay; (b) the speci®c volume±density correlation, b; (c) the contraction of the
Reynolds stress tensor, Rnn and (d) the Ryy component of the Reynolds stress tensor.
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The issue of r variations across the TMZ can be put into clearer perspective by further
consideration of the experimental observations. Fig. 23 is adapted from the Russian report
(Kucherenko et al., 1991) in which they analyze the process for a variety of di�erent density
ratios, n= r2/r1. The principal issue concerns the identi®cation of edge locations for the TMZ
for which they use both photographic and X-ray techniques. They de®ne edge positions in
terms of a fractional quantity, d, which designates fraction of purity for the heavier ¯uid at
which the edge is de®ned to be located. Typical values are d=0.10, 0.90 and d=0.01, 0.99
(this last being stated as 0.98 on one of the Fig.s in their report, presumably erroneously).

Fig. 23(a) shows variations in the average ¯uid density across the TMZ for a typical
example, n=3. Error bars indicate the uncertainty, especially with implications for edge
location. With d=0.01, 0.99, the distances h1, and especially h2 depend strongly on how the
datum points are connected through the envelope of error bars. With d=0.10, 0.90, the
sensitivity is reduced, and the ratio, h2/h1, is considerably smaller. Fig. 23(b) and (c) illustrates
the e�ects of choosing di�erent edge criteria. Combining both Russian and British data, we see
in Fig. 23(d) a considerable scatter in data. The ®gure also shows the base-case numerical
results for both the local and nonlocal sources, as well as the case of a density ratio, n, of 5
using a nonlocal source term (as previously discussed in Section 3 of this paper). Numerical

Fig. 20. Comparison of the high wave number, power-law behavior of k at t=65 for a local and nonlocal source
term: (a) the net mass-¯ux velocity, ay; (b) the speci®c volume±density correlation, b; (c) the contraction of the
Reynolds stress tensor, Rnn and (d) the Ryy component of the Reynolds stress tensor.
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problems have precluded testing the model for density ratios greater than 5. Refer to Table 2
for the values of h2/h1.
The calculation with the nonlocal source is considerably closer to the most-likely

experimental value, but it is apparent that more precise data would be useful as a basis for
validation of any modi®ed form for Q( y 0,y) in the expression for nonlocal creation.
Subsequently, a calculation was performed for a somewhat di�erent departure from the base

case, to examine the consequences of modifying the low wave number initialization of b. In the
initial-condition formula for b in the interface computational cell, Eq. (1), we used m=4 in the
base case and m=2 in this modi®ed run.
Here g1 and g2 are speci®ed by Eq. (3). All other conditions were the same for the two

calculations. The purpose for the comparison is to explore the possibility of nonuniqueness for
late-time self-similarity as induced by the persistence of structure at low wave numbers, i.e. the
persistence of memory of large scales. This intriguing question has been discussed at length by
previous investigators. Constant density, isotropic turbulence has been analyzed by a number
of investigators using the EDQNM model; Lesieur and Schertzer (1978) show that for m
greater than or equal to 4, a single self-similar form function will emerge; for m<4, spectra
will persistently depend on the value of m. In fully three-dimensional k-space the continued
in¯uence of low wave-number structure on self-similarity gives a rich set of potential form

Fig. 21. Normalized spectra for t=30, 35, 40, 45, 50, 55, 60 and 65, a distance of 50 units of length below the
centerline of the TMZ for: (a) the net mass-¯ux velocity, ay; (b) the speci®c volume±density correlation, b; (c) the
contraction of the Reynolds stress tensor, Rnn and (d) the Ryy component of the Reynolds stress tensor.
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functions. In the current comparison we see that with m=2 the di�erences from the base-case
results are so slight, largely due to choice of modeling, that we could not e�ectively illustrate
them in ®gures.
With m=2

. the values of ay, Rnn and Ryy are slightly larger;

. h2/h1 is slightly smaller (asymptotically, h2/h111.03);

. the TMZ spreads a bit faster, a=0.098;

. the spectra all propagate slightly faster toward low wave numbers.

These trends are qualitatively consistent with the fact that m=2 gives larger b values for small
wave numbers, persistently resulting in creation enhancement for ay and in turn the Reynolds-
stress components.
As a last numerical example, we discuss the e�ects that result from a change in Cfb, the

``bubble-doubling'' coe�cient. In the base case, Cfb=0.50; in the comparison calculation Cfb is
increased to 0.65. The most prominent of the results are shown in Fig. 24. As discussed in
Appendix C of Article I, there are competing processes at low wave numbers, for which the
three most prominent contributors are

Fig. 22. Comparison of the pro®les of the length scales across the TMZ for a local and nonlocal source term at
t=65 for: (a) the net mass-¯ux velocity, ay; (b) the speci®c volume±density correlation, b; (c) the contraction of the

Reynolds stress tensor, Rnn and (d) the Ryy component of the Reynolds stress tensor.
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. the initialization exponent, m, for b;

. the value of Cfb;

. the nonlocal source for Reynolds stress.

The dominant e�ect is that of m, which sets the exponent for all the variables to magnitudes

not far from m and that persist into the self-similar stages. Nonlocality of source to Reynolds
stress tends to increase the exponent; only the local source is spectral-form preserving (i.e.
imparts the low wave-numbers form of ay without distortion). The Cfb contribution tends to
decrease the exponent at low wave numbers for b, with the e�ect spreading to ay and thence to
Rnn and Ryy. The net e�ect of these in¯uences is seen in Fig. 24, which shows the greatest
change in b, less in ay, and even less in the Reynolds-stress spectra. Also apparent in Fig. 24 is

the greater width of the TMZ for the calculation with larger Cfb. At high wave numbers the
e�ects of this increase in Cfb are negligible. Comparisons of self-similar spectral forms are not
illustrated in the ®gures; the forms are almost precisely the same as for the base case; with
Cfb=0.65 all of the normalized spectral forms show slightly higher magnitudes at low wave
numbers and slightly lower magnitudes at high wave numbers.

Fig. 23. Experimental data from Chelyabinsk-70 (Kucherenko et al., 1991) for: (a) concentration pro®le through

TMZ (n=3); (b) bubble and spike penetration depth; (c) asymmetry of spike to bubble ratio and (d) comparison of
numerical results to experiments (Kucherenko et al., 1991; Smeeton and Youngs, 1987).
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5. Conclusions

A spectral turbulence transport model for variable density ¯ows has been formulated (Article
I) and applied to a turbulent mixing layer. Comparisons with experiment indicate that our
model is capable of capturing the evolution of the self-similar stage of mixing that ensues from
the Rayleigh±Taylor instability. In addition to matching the available experimental data on
Rayleigh±Taylor instabilities, the formulation provides much more meaningful physical insight
into the structure of the turbulence beyond that which single-point models are capable of
providing. Examples are also given for a case of acceleration reversal to demonstrate the
spectral behavior throughout a rapid transient in the mean ¯ow driver.
The spectral model also allows the development of a systematic way to incorporate increased

sophistication into a single-point model through spectral integration. As a result, development
of single-point models that includes more physics than the current single-point models may be
possible. This technique provides a basis for determining when a single-point model is
adequate to describe a ¯ow (i.e. the ¯ow is in spectral equilibrium) and when we are forced to
resort to the more expensive spectral model (i.e. the ¯ow is out of spectral equilibrium due to
rapid transients in the mean ¯ow drivers). When the ¯ow is in spectral equilibrium, the length
scales maintain a constant ratio, and the single-point models are adequate for describing the

Fig. 24. Comparison of the low wave number, power-law behavior of k at t=65 for two di�erent values of Cfb for:

(a) the net mass-¯ux velocity, ay; (b) the speci®c volume±density correlation, b; (c) the contraction of the Reynolds
stress tensor, Rnn and (d) the Ryy component of the Reynolds stress tensor.
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¯ow, but when the ¯ow experiences a transient, the length scales ¯uctuate relative to one
another, and a spectral model is needed to describe the ¯ow until it has once again returned to
spectral equilibrium. A spectral model permits the investigation of this rate of return to
equilibrium and identi®es the primary competing processes responsible for these rates, such as
mean ¯ow time scales versus cascade and decay time scales.
This spectral model has enabled us to identify spectral self-similarity in the mixing of two

¯uids for the ®rst time. It has been known for some time, both experimentally and numerically,
that the turbulent mixing due to the late stages of the Rayleigh±Taylor instability is a self-
similar process. This model has, for the ®rst time, allowed us to examine the spectral relations
between the various components of the ¯ow and gain insight into the approach to self-
similarity, and consequently the realm of validity for the single-point models. We have
identi®ed independent self-similar behavior for both k-space and physical space.
To complement the previous research in spectral turbulence transport modeling, this research

has made three signi®cant contributions: (1) a nonlocal source term for the Reynolds stress
transport equation that accounts for the global pressure e�ects due to incompressibility; (2) a
source term to the b equation driven by the density-gradient that contributes to the ``bubble
doubling'' phenomena of turbulent structures as observed by experiment; and (3) a
con®gurational source term to the b equation that is rigorously derived for the two-¯uid
circumstance. All three of these contributions result in signi®cant improvements to the spectral
model.
This spectral model provides the physical ®delity, above and beyond that given by single-

point transport models, for the improved modeling of ¯ows that are aligned with real life
situations. The spectral model thus allows for the description of ¯ows that undergo rapid
transients, and, hence, may be useful in a variety of practical applications.
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Appendix A

A.1. Self-similar forms

In this article we have demonstrated the concept of statistical self-similarity for the example
of a TMZ between two immiscible ¯uids. As an idealization, the zone extends laterally in all
directions and all quantities are statistically independent of the lateral dimensions. Indeed, we
have assumed that ensemble averaging can be replaced by lateral spatial averaging, with results
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that vary in time only as functions of wave number and the distance normal to the layer. Such
an idealization does not exist in nature, but there are nevertheless numerous circumstances in
which it serves as a good approximation.

Jeandel et al. (1978) argued that statistical self-similarity is a crucial element for the validity
of single-point turbulence transport models. In order to describe with a small number of
variables the collective e�ects of a virtually in®nite number of degrees of freedom, it is clear
that severe constraints must exist to con®ne the dynamics of the ¯uid to a very small set of all
possibilities. Moreover, one of the necessities for single-point applicability is that the return to
self-similarity occurs rapidly after a change in the external drive conditions.

Self-similarity of the statistics is characterized by self-similar statistical forms. They always
occur with the same structure for a speci®c set of mean ¯ow circumstances after proper space-
and time-scalings are performed. ``Universal'' self-similar forms, however, are idealizations that
never precisely occur in nature, although in many situations of interest they may be
approximately satis®ed. The forms of such functions may strongly re¯ect the existence of
anisotropy and may depend on persisting conditions in the limit as vkv 4 0. Subsets can be
found in k or y space alone and in various other combinations of the wave number and
position-vector components. Complete analytical derivation is di�cult (see Besnard et al.,
1996); partial derivations are well known for simple cases (e.g. the k ÿ5/3 inertial range for Raa;
more general extraction may only be possible numerically).

The simplest statistical self-similar forms occur in the decay of homogeneous isotropic
turbulence for constant density ¯uid with vanishing viscosity. Besnard et al. (1996) discuss this
form and use an anisotropic generalization to derive spectral moments. They show that with
this simple idealization, the single-point equations (e.g. K±e models) can be derived. These
types of single-point equations have been successfully applied to circumstances far beyond the
case of homogeneous anisotropic decay.

In general, self-similarity for the behavior of some turbulence statistic like Rij( y,k,t) (we have
included the arguments in this appendix for clarity) means that a scaling law can be found for
its variations in magnitude, such that the scaled quantity is then a function only of the
combined variables, y/L(t) and kL(t), in which L(t) is a function with the dimensions of length.
Thus the function of three variables, y, k and t, has been transformed to a function of two
variables.

This scaling of magnitudes and the independent variables that de®ne self-similarity can be
described more precisely. Consider the behavior of

E�y; k; t� � 1

2r
Rnn�y; k; t� �A1�

which has the dimensions of (distance)3/(time)2. Suppose we scale the space and time
coordinates such that
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y! ony

k! oÿnk

t! omt �A2�
where o is a dimensionless number that de®nes the scale, while m and n are numbers to be
speci®ed. We also scale the magnitude of E according to its dimensionality,

E! o3nÿ2mE �A3�
Our constraint of self-similarity in this process results in the equation

o3nÿ2mE�k; y; t� � E ony;oÿnk;omt� � �A4�
Di�erentiate with respect to o and then set o=1. The result is

�3nÿ 2m�E � ny
@E

@y
ÿ nk

@E

@k
�mt

@E

@t
�A5�

that can be solved to give

E�y; k; t� � t
3nÿ2m

m F̂
y

tn=m
; ktn=m

h i
�A6�

where FÃ is an arbitrary function of its arguments. The origin of time is arbitrary, so that we
may choose the onset of self-similarity at some time, t0, and write

L�t� � L0�tÿ t0�n=m

K�t�L�t� � K0L0�tÿ t0�3nÿ2mn �A7�
thus re-expressing the solution in the form

E�y; k; t� � K�t�L�t�F y

L�t� ; kL�t�
� �

�A8�

with F having absorbed some constants and likewise being an arbitrary function of its
arguments. Note that in this form�1

0

E�y; k; t�dk � K�t�G y

L�t�
� �

�A9�

where

G�Z� �
�1
0

F�Z; x�dZ: �A10�

This form for E( y,k,t) describes a constraint of self-similarity. It is derived without reference to
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the transport equation for E and serves to distinguish from all possible solutions a particular
subset with a type of self-similarity.

Dimensional arguments for the spectrally integrated quantities are based on the TMZ
growth having ``forgotten'' all ®nite scale details of the initial conditions so that the
acceleration g is the only dimensional scaling parameter. Thus any velocity scale must vary as
gt while the turbulence energy per unit mass and length scales vary as gt 2. Thus n and m are
constrained to n=2 m.

Applied to homogeneous, isotropic turbulence, the result of self-similarity is the conversion
of a partial di�erential equation for E(k,t) to an ordinary di�erential equation for F[kL(t)].
Besnard et al. (1996) discuss in detail the properties of F.

For the mixing-layer analysis in y±k space, the self-similarity constraint has likewise reduced
the number of independent variables, but insertion into the transport equation nevertheless
results in a partial di�erential equation for F( y/L,kL), which has a much greater richness of
possible solutions than the ordinary di�erential equation for homogeneous, isotropic
circumstances. We thus see hints of possible nonuniqueness of self-similar mixing-layer
turbulence.

The breadth of possibilities increases substantially when we examine the behavior in six-
dimensional circumstances. Recognizing the dimensionality of Rij(x,k,t)/2r as (distance)5/
(time)2, we can derive a self-similar constraint in the form

Rij�x; k; t�
2r

� K�t�L3�t�Fij
x

L�t� ; kL�t�
� �

�A11�

where

L�t� � L0�tÿ t0�n=m

K�t�L3�t� � K0L
3
0�tÿ t0�5nÿ2mm �A12�

Insertion of this form into the full transport equation reduces the seven independent variables
in the partial di�erential equation to six independent variables. For the mixing layer with
physical-space dependence on y, only, the number of independent variables is four. We are in
the process of examining some of the properties and consequences of this more general self-
similarity for the turbulence of a single ¯uid with constant density, but such discussions for
variable-density ¯uids are beyond the scope of this article.

We are, however, concerned with extensions to the self-similar form in our special case of
the mixing layer. We rewrite Eq. (A8) with a di�erent combination of variables in the F
function (which is perfectly allowable) i.e.
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E�y; k; t� � K�t�L�t�F
"

y

L�t� ; kL�t�G
�

y

L�t�
�#

�A13�

We hypothesize that the G function can be found in such a way that

F

"
y

L�t� ; kL�t�G
�

y

L�t�
�#
� F1

�
y

L�t�
�
F2

"
kL�t�G

�
y

L�t�
�#

�A14�

This hypothesis is capable of being tested numerically. It states in e�ect that the spectrum is
self-similar in k-space with a shift in maximum and position thereof for which kL(t) depends
only on Z, where Z= y/L(t). The ®rst realization of this form was described by Besnard et al.
(1996) on the basis of numerical solutions of their spectral model equations for a constant-
density ¯uid in a temporally evolving shear layer. In this article we have described a further
realization for the turbulent mixing of two ¯uids.

We are led to de®ne a length scale L( y,t) that varies with both position and time, as was
assumed by Besnard et al. (1996) for the spectral-moment derivations of single-point transport
equations. Thus we de®ne L( y,t) as being equal to L(t)G(Z), and K( y,t)L( y,t) as identically
being equal to F1(Z)L(t)K(t). Then Eqs. (A13) and (A14) can be written as

E�y; k; t� � K�y; t�L�y; t�F2

�
kL�y; t�� �A15�

Even more generally, if the mixing layer is of ®nite lateral extent or curved away from
planarity, we postulate the concept of localized self-similarity with K(x,t) and L(x,t), which is
the actual form used for deriving moment equations for turbulence in a constant density ¯uid.
In this more general case, we believe that the decomposition described in Eqs. (A13) and (A14)
is also relevant.

Appendix B

B.1. Moments of the spectral equations

With the spectral transport equations of Article I, it is possible to solve a much wider scope
of problems than can be addressed with single-point (nonspectral) formulations. Rapid
variations in drive, for example, distort the nearly self-similar form functions into strongly
circumstance-dependent expressions. Spectral equations work well for describing such
processes, but spectrally integrated moment equations, based on assumed persistence of self-
similarity, may exhibit large errors for such applications.

Spectral transport formulations are more complicated, however, as well as being much more
expensive to use in numerical investigations with high-speed computers. Thus we use the two
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approaches in complementary fashion; in particular, we look at the spectral approach for clues
to improving and extending the moment equations.

Steinkamp (1996) discusses the single-point turbulence transport equations in terms of
previous nonspectral derivations, to which are added some important clari®cations and
extensions. Signi®cant di�culties are also described, especially in regard to size scales
associated with both the turbulence and the interfacial con®guration of mixing ¯uids. Decay of
turbulence, for example, is directly related to the transfer rate from low to high wave numbers.
Sources to turbulence can be strong in the ``active'' scales and weak in the ``passive'' scales, the
latter simply balancing the buoyancy forces with drag. The resolution of these and other
questions leads directly to the spectral formulations; the inverse process takes the spectral
equations back to single-point form but augmented with representations of the principal
spectral improvements that were previously missing.

Before proceeding with the derivations, we describe an example of the new single-point
augmentation. For the simple self-similar mixing layer that dominates the considerations of
this article, it is arguable that single-point transport equations are not required for both ay( y,t)
and Rij( y,t). They are, after all, scaled in dimensionality by the same quantity, acceleration g;
and the spectral functions on which they are based are of universal form, so that knowledge of
one implies that the other is known. Moreover, the scales associated with the spectral
quantities b, ay, and all the components of Rij must be directly proportional to each other with
universal ratios. Thus a pair of single-point equations for ay( y,t) and its associated length
scale, La( y,t), should be su�cient to determine the entire process. These ideas are amply
veri®ed in the examples shown in Section 2.

Those examples show, however, that at the moment when self-similarity is destroyed (e.g.
through reversal of g), the relationship among ay, Rnn and Ryy is at once lost. Each evolves in
its own particular response to the new circumstances, returning to a unique, universal
relationship to each other only when (and if) self-similarity is again established (which is not
the case during the de-mixing process), in which the width of the layer at the instant of
acceleration reversal is ®rmly implanted as an additional dimensional quantity. In addition, the
length scales associated with each of the spectra are now no longer universally proportional to
each other. If the driver continues to vary in capricious fashion, these independent behaviors
continue; and the discernment of relationships among variables requires the simultaneous
transport analysis of them all.

The spectral equations describe all these ``independent'' but interactive behaviors. Can
single-point (spectral-moment) equations do likewise? There is evidence to suggest that they
can do fairly well in this regard. Simple single-point Rij( y,t)±e( y,t) models describe at least
some types of transient circumstances, despite their derivation being equivalent to moments of
the spectral form functions.

At least two things must contribute to the success of single-point (nonspectral) formulations.
One of these is the tendency for spectra to vary principally in magnitude during many kinds of
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transients, with little change in form (for example, ay during acceleration reversal in Section 3).
The second is the tendency for rapid return to self-similarity after a transient change in drive.
This latter, indeed, furnishes a signi®cant criterion for spectral-moment transport validity in
terms of the competition between change in rate of drive and return rate to self-similarity.
With the spectral equations, this competition can be examined in detail.

In this Appendix we show the spectral moment derivations for the simplest TMZ, in which
all ensemble averaged (layer-averaged) spectral quantities are functions of y, k and t only. We
write

ay�y; k; t� � ay�y; t�La�y; t�Fa

ÿ
kLa�y; t�

�
b�y; k; t� � b�y; t�Lb�y; t�Fb

ÿ
kLb�y; t�

�
Rij�y; k; t� � 2 �r�y; t�K�y; t�LR�y; t�Fij

ÿ
kLR�y; t�

� �B1�

Here, K( y,t) denotes the single-point turbulent kinetic energy and as usual, r( y,t) is the
average density. The wave number, k, occurs only in the self-similar form functions, the Fs.
The purpose of this Appendix is to derive spectral moment equations to describe the transport
of ay( y,t), b( y,t), K( y,t), La( y,t), Lb( y,t), and LR( y,t).

There are an in®nite number of possible moments. The spectral-moment transport equations
that we propose are six in number, two for each of the spectral equations for ay, b and Rnn,
since each has two unknown functions of position and time, a magnitude, and a length scale.
(At this stage we assume that the di�erence between Rnn and Ryy is su�ciently represented by
their two di�erent forms, namely Fnn and Fyy).

We substitute the self-similar forms of Eq. (B1) into the spectral transport equations of our
model, i.e. Eqs. (25), (33) and (35) from Article I and integrate over dk to get evolution
equations for K( y,t), ay( y,t), and b( y, t). The resulting transport equations depend on time
and the physical-space variable, y, only. Due to the self-similar forms of Eq. (B1), length scales
for each of the variables are incorporated into the new single-point transport equations. These
length scales, namely La( y,t), Lb( y,t) and LR( y,t), may be considered the inverse of the
dominant wave number kmax of the spectrum for each of the variables. In addition to
performing the integrations just described, we also integrate the spectral transport equations
over kmdk for m=ÿ1 to get transport equations relating the single-point quantities to their
associated length scales.

The functions are normalized to

�1
0

Fa�x�dx �
�1
0

Fb�x�dx �
�1
0

Fnn�x�dx � 1 �B2�

The maximum value of all three form functions is unity corresponding to the position x=1.
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The process of substituting the self-similar forms from Eq. (B1) into the spectral transport
equations and performing the integrations discussed above is straightforward. The local
cascade terms are the only terms that warrant closer examination. The integration will be
shown for the cascade of a generic variable, j.

The generic cascade terms are expressed as

@

@k
k2

����������
kRnn

�r

s
ÿC1j� C2k

@j
@k

� �" #
�B3�

Taking the mth moment of this cascade term�1
0

km @G�k�
@k

dk �B4�

where

G�k� � k2

����������
kRnn

�r

s
ÿC1j� C2k

@j
@k

� �
�B5�

Upon integrating by parts,�1
0

km @G�k�
@k

dk � �k0�mG�k0�
���
k0!1

ÿm

�1
0

kmÿ1G�k�dk �B6�

For this model, a good approximation for the high wave number spectral behavior of the three
quantities ay, b and Rnn is that all three behave as km, where m is at most ÿ5/3. G(k) remains
constant for large values only when one samples the spectrum far enough to the right (away
from the in¯uence of ay). Upon examination of G(k), it can then be seen that G(k) approaches
a constant value as k 41; thus for all values of m such that mR0, only the m=0 moment
will result in a nonzero contribution from the ®rst term on the right side of Eq. (B6). Therefore
the moment integral of the cascade terms can be expressed as

�1
0

km @G�k�
@k

dk �
ÿm

�1
0

kmÿ1G�k�dk; for m 6� 0

k2

����������
kRnn

�r

s
ÿC1j� C2k

@j
@k

� �����
k!1

; for m � 0

8>>>>><>>>>>:
�B7�

The term resulting from the moments for m$0 on the right side of Eq. (B7) is a constant that
represents the decay of the quantity j due the cascade action of the turbulence to higher and
higher wave numbers.
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With the discussion of the cascade terms completed, the self-similar forms from Eq. (B1) are
now substituted into the spectral model equations of Article I and the moments for m=0 and
the m=ÿ1 are calculated. The resulting three transport equations for ay( y,t), b( y,t) and K( y,t)
are (omitting their arguments for brevity)
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and the three corresponding transport equations of the respective length scales, La( y,t), Lb( y,t)
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Note that the decay term due to molecular di�usion in the b( y,t) equation has been omitted
since we have neglected this e�ect in this study. Note the persistence of the nonlocality in both
the transport equation for K( y,t) and its length scale LR( y,t). This nonlocal contribution
represents an extension of the physics that is currently implemented in the formulation of
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single-point model equations. Another enhancement to single point models, as derived by
Steinkamp (1996), is the density±mass±¯ux gradient source term to b( y,t).
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